九州平台-九州(中国)学术活动预告
报告承办单位:数学与统计学院
报告内容: Medical Applications of Improved Super Asymmetric Support Vector Machine
Recently deep learning algorithms have achieved great success in the field of computer vision. The popularization of artificial intelligence based on deep learning in various fields requires a large number of manually labeled data. However, in medical field, it is really expensive and difficult to gather massive accurate annotations labeled by experts with rich clinical experience. This talk introduces a method called Super Asymmetric Support Vector Machine (SASVM) to solve the problem of poor accuracy and consistency of medical data. In this method, positive examples are augmented with some non-classical data whose annotations may be insufficient or inconsistent. Furthermore, the methodology could be applied to multi-instances learning.
报告人姓名: 李明
报告人所在单位:太原理工大学
报告人职称/职务及学术头衔:教授
报告时间: 2019年12月28日15:00-16:00
报告地点:理科楼A-419
报告人简介: 李明,教授,博士生导师,2010年毕业于香港城市大学,获博士学位。现任太原理工大学党委常委、副校长。山西省高等学校优秀青年学术带头人、山西省优秀科技工作者、山西省131领军人才、山西省青年拔尖人才。担任国际SCI期刊International Journal of Computational Method编委,山西省工业与应用数学学会副理事长。长期致力于计算数学、无网格计算方法和医疗大数据等研究。已发表SCI论文70余篇,出版英文专著1部。主持国家自然科学基金项目3项,中国-斯洛文尼亚政府间科技合作项目1项、省部级项目7项、教改项目1项。